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Abstract
We apply a five-dimensional formulation of Galilean covariance to construct
non-relativistic Bhabha first-order wave equations which, depending on the
representation, correspond either to the well known Dirac equation (for particles
with spin 1/2) or the Duffin–Kemmer–Petiau equation (for spinless and spin 1
particles). Here the irreducible representations belong to the Lie algebra of the
‘de Sitter group’ in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-
relativistic limits of the corresponding equations are obtained directly, without
taking any low-velocity approximation. As a simple illustration, we discuss the
harmonic oscillator.

PACS numbers: 03.65.-w, 03.65.Pm, 02.20.Sv

1. Introduction

The purpose of this paper is to review and complete an earlier work, where a geometrical
formulation of Galilean covariance in five dimensions was used to construct the Duffin–
Kemmer–Petiau (DKP) wave equation for spinless particles [1]. Here we emphasize the
role played by the underlying Lie algebra so(5, 1), and construct the corresponding Bhabha
equations describing non-relativistic spin 0, 1/2 and 1 particles.

During the last decades, many concepts and techniques of quantum field theory have been
shared between relativistic particle physics and condensed matter physics: gauge invariance,
spontaneous symmetry breaking, Goldstone bosons, and so on. However, whereas the first is
based on Lorentz-covariant relativity, a key ingredient to describe some topics of condensed
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matter is rather the Galilei covariance. This has prompted a geometrical formulation of the
Galilei covariance so that the methods would follow the same general lines as the usual
relativistic theories, in particular the possibility of using the powerful techniques already
existing in the relativistic situations, e.g. in quantum field theory. Therefore, a more geometrical
description of the Galilean invariance, based on a metric space, than what is usually found in the
literature, is needed. (For an excellent, albeit not recent, review of Galilean invariance see [2].)
Once a covariant formalism is at hand, then physical applications involve the construction of
invariant wave equations analogous to the Dirac or Maxwell equations in Lorentz-invariant
quantum field theory, obtaining thereby their non-relativistic version directly. This paper
follows this direction. In the rest of this section we briefly review the notion of Galilean
covariance in five dimensions [3–7]. In addition the relativistic Bhabha field equation, along
with some of its symmetry properties, is reviewed.

A way to achieve a covariant formulation of Galilean invariance is to extend the ordinary
space–time by adding an extra dimension so that the formalism involves an embedding in
a five-dimensional de Sitter space of type 4 + 1. One obtains thereby a covariant form for
non-relativistic theories. The precise formulation of the Galilei transformations involving the
extra dimension has been introduced by Takahashi [3] and investigated in relation with the
Schrödinger field [4]. A simple dynamical argument in favour of working in five dimensions
is the following. The Galilei transformations

x→ x′ = Rx− vt + a

t → t ′ = t + b
(1)

clearly do not leave the free Lagrangian

L = 1

2
m

(
dx

dt

)2

(2)

invariant, although they do so for the equations of motion:

d2x

dt2
= 0. (3)

A well known consequence of this quasi-invariance is that the corresponding quantum
wavefunction is given by a projective representation of the Galilei group. This follows from the
fact that the transformed Lagrangian differs from the original Lagrangian by a total derivative,
and since the wavefunction is related to exp i

h̄

∫
L dt , the additional term induces a phase factor

in the wavefunction. However, following an earlier idea [6], full invariance is achieved if one
enlarges the configuration space (here by one dimension) and defines

L→ L−mds

dt
(4)

given that the extra parameter s transforms as

s → s − (Rx) · v + 1
2v2t + const. (5)

Therefore one obtains a Galilei-covariant formalism as shown in [3, 4]. The transformations
given in equations (1) and (5) leave invariant the scalar product gµν dxµ dxν , with the metric

gµν = gµν =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0


 (6)

for a five-dimensional manifold with coordinates

x = (x1, x2, x3, x4, x5) = (x, t, s). (7)
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In the following we shall refer to equation (6) as the Galilean metric. As mentioned in [4] this
metric can be diagonalized into diag(+,+,+,+,−). Thus, the Galilean covariant formalism
consists in embedding the usual three-dimensional space (with time t playing the role of an
external parameter) into a 4 + 1 de Sitter space. We shall see below that this embedding has
its counterpart at the level of fields and, in our opinion, this is where the most fundamental
mathematical problems are left unexplored: one needs a classification of such embeddings and
well defined equivalence relations among them. Here we use the above formalism to construct
and investigate the non-relativistic Bhabha equations that describe particles of spin 0, 1/2 and 1,
that is, first-order linear wave equations as investigated earlier for relativistic fields [8–10].

Dirac, Fierz and Pauli constructed wave equations using the guiding principle
that each component satisfies a dispersion relation, e.g. the second-order Klein–Gordon
equation [11, 12]. Such requirements (a first-order linear equation and the dispersion relation)
lead to commutation relations among the generators appearing in the wave equation, e.g. the
Clifford algebra of the Dirac gamma matrices. For spin greater than 1, these equations cannot
be written in the form of equation (8), as shown in [8]. Then the equations obtained by Dirac,
Fierz and Pauli involve an additional set of subsidiary conditions which clearly become more
complex when interactions are introduced. (Let us just mention an alternative procedure, due
to Majorana [13], in which the existence of the dispersion relation is not required.)

The various first-order wave equations in 3+1 space–time may be considered as particular
cases of the generic Bhabha equations [8–10]

(αµ∂µ + k)� = 0 (8)

where the αµ are given by the generators of the irreducible representations of so(4, 1)

αµ ≡ Jµ5 Jµν = −i
[
αµ, αν

]
J55 = 0 (9)

and k is a constant. Depending on the specific irreducible representation of so(4, 1),
equation (8) is, for instance, the Dirac [11] or the DKP [14] equation, corresponding to half
integer and integer spin, respectively. The DKP ring is discussed in more details in [9, 15].

Unlike the Dirac equation, the DKP equation has had a mixed success; it has been used
to describe the interaction of charged particles with an electromagnetic field and the results
agreed (up to one-loop corrections) with those based on a second-order formalism. However
it is not clear whether the equivalence between the two formalisms is valid to all orders.
Among the recent applications of DKP equations, let us mention a post mortem article by
Gribov [16], in which he investigated QCD by using the DKP formalism to introduce multi-
component Green functions for the gluon, thereby presenting a form in which the interaction is
momentum independent. More recently, a proof of the equivalence between DKP and Klein–
Gordon theories has been provided by Fainberg and Pimentel [17] for charged scalar particles
interacting with external and quantized electromagnetic and Yang–Mills fields, as well as
with an external gravitational field. Along the same lines, Lunardi et al [18] have solved
two problems associated with the gauge invariance of the DKP field: the occurrence of an
anomalous term in the Hamiltonian form and a difference between the interaction terms in DKP
and Klein–Gordon Lagrangians. Let us mention also the recent work by Kanatchikov [19],
related to field theories admitting a De Donder–Weyl Hamiltonian formulation.

Nikitin and Fuschich [20] have attempted to incorporate the ideas of Bhabha to equations
for higher spins in non-relativistic physics. The present paper has the goal to accomplish this
objective within a fully Galilean covariant approach. This is achieved by using equation (8)
as a starting point with the metric given by equation (6). Hereafter, we follow the general
Bhabha theory in the five-dimensional space and use representations of so(5, 1) to construct
the α of equation (8). Since the representations of the Lie algebra so(5, 1) are so crucial, let
us give some details about their theory. The compact real form of so(5, 1) is so(6). As is well
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known [21], the Lie algebra so(6), and its non-compact real forms, are 15-dimensional with
rank three. Using Cartan notation, the complexification of so(6) is D3 ≈ A3 which implies
that so(6) is isomorphic to su(4). Therefore its unitary irreducible representations include
the four-dimensional fundamental representation of su(4), as well as the six-dimensional
fundamental representation of so(6). Both are used hereafter. Using the Gelfand and Zeitlin
notation [9,22], the irreducible representations of so(5, 1) are denoted by triplets {l1, l2, l3} of
integers or half-integers such that l1 � l2 � l3. Their dimensions are given by

dim{l1, l2, l3} = 1
12 [(l1 + 2)2 − (l2 + 1)2][(l1 + 2)2 − l23 ][(l2 + 1)2 − l23 ] (10)

and they describe particles with spin at most equal to l1. For instance the dimensions of
the irreducible representations {0, 0, 0}, { 12 , 1

2 ,
1
2 }, {1, 0, 0}, {1, 1, 1}, {1, 1, 0}, {2, 0, 0} and

{2, 2, 2} are 1, 4, 6, 10, 15, 20 and 35, respectively. Hereafter we shall use 4-, 6- and 15-
dimensional irreducible representations to describe fields with spin 1/2, 0 and 1, respectively.
In [20], the 10-dimensional representation is used for spin 1. As discussed in [8, 10] for the
relativistic cases, the Bhabha formalism typically involves multimass and multispin systems,
and a detailed description of the spin content of each representation (of so(6)) remains to be
done for the non-relativistic theories.

2. Non-relativistic Bhabha equations and so(5, 1)

In relativistic field theories, the Bhabha equation is invariant under the inhomogeneous Lorentz
transformations. To the generators of these transformations we can add the four generators
α of equation (8) to extend the Lie algebra so(3, 1) to the algebra so(4, 1), which is then a
unifying Lie algebra in the sense that its various representations provide the generators of the
linear wave equations for different spins [8]. Similarly, the Galilean covariance of the non-
relativistic Bhabha equations, equation (8), hereafter is extended to the Lie algebra so(5, 1)
by including the five generators α. Therefore the non-relativistic Bhabha wave equations are
built using the irreducible representations of so(5, 1).

The calculations described hereafter, within the scheme of Galilean covariance, are similar
to the relativistic case [8,10]. We require the Bhabha equation, (8), where µ now runs from 1
to 5, to be invariant under Galilei boosts, given by equations (1) and (5) with Rij = δij , a = 0
and b = 0, cast together into the form

x ′µ =  µν xν (11)

with x given in equation (7). This implies that the field � transforms according to

� ′(x) = U( )�( −1x) (12)

and the generators α transform as

[U( )]−1αµU( ) =  µν αν (13)

just like the usual relativistic wave equations.
Writing the generators of the transformations given in equation (11) as

Jµν ≡ i (xµ∂ν − xν∂µ) (14)

they are found to satisfy the usual commutations relations

[Jµν, J αβ] = i
(
gναJµβ + gµβJ να − gνβJµα − gµαJ νβ) (15)

where gµν is the Galilean metric, equation (6). WithU( ) = exp(iωµνJµν), where ω is given
by  µν = δµν + ωµν , one obtains from equation (13) that

[αµ, J αβ] = i(gµααβ − gµβαα). (16)
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The next step, following the same procedure as the first paper of [8], consists in obtaining[
[αµ, αν], J αβ

] = i
(
gνα[αµ, αβ] + gµβ[αν, αα]− gνβ[αµ, αα]− gµα[αν, αβ]

)
(17)

which upon comparison with equation (15) shows that Jµν is proportional to the commutator
[αµ, αν], and we shall choose the constant of proportionality to be −i, as in equation (9), so
that

Jµν = −i
[
αµ, αν

]
. (18)

Equations (15)–(17) together form the Lie algebra so(5, 1) and it is convenient to rewrite
them using the uniform notation

{JAB | A,B = 1, . . . , 6; A < B} (19)

with

JAB = Jµν (20)

where both A and B lie between 1 and 5, and

JA6 = −J 6A = αA A = 1, . . . , 5. (21)

The additional ingredients that we need are the metric elements involving the index 6; we
choose them to be

g66 = +1 and gµ6 = 0 µ �= 6. (22)

Given this information, equations (15)–(17) can be all cast into the unified form[
JAB, JCD

] = i
(
gBCJAD + gADJBC − gACJBD − gBDJAC)

(23)

where the six-by-six metric is given by equation (6), supplemented with equation (22):

gAB = gAB =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 1



. (24)

This metric clearly generates the group SO(5, 1) since it can be diagonalized to
(+,+,+,+,−,+).

In the following, we shall use the momentum expression of equation (8):(
αµpµ − ik

)
� = (

α · p + α4p4 + α5p5 − ik
)
� = 0. (25)

The factor h̄ has been absorbed into the constant k. The indices from 1 to 6 correspond to
the metric, equation (24), and the generators of so(5, 1). We use Greek indices to denote
Galilei-covariant quantities, such as xµ, αµ, etc where µ = 1, . . . , 5. Lowercase letters
m, n, . . . = 1, 2, 3, denote ordinary space coordinates, as in xn and J n6.

3. DKP equation: spin zero and spin one

The DKP equation is [14]

(βµ∂µ + k)� = 0 (26)

where k is an arbitrary constant that we do not specify at this point. In the non-relativistic
regime considered here, the five matrices β satisfy the DKP algebra

βµβλβν + βνβλβµ = gµλβν + gνλβµ (27)
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where gµν is the Galilean metric. (In the relativistic case, there are only four generators β, and
gµν is the usual four-dimensional Lorentz metric.)

The DKP equation (26) is obtained from the Lagrangian

LDKP = �
[

1
2β
µ(
−→
∂ µ −←−∂ µ) + k

]
�

= 1
2�β

µ∂µ� − 1
2

(
∂µ�

)
βµ� + k��. (28)

The adjoint of � is given by � ≡ �†η, where

η = (β4 + β5)2 + 1. (29)

One can show that

βmη = −ηβm
β4η = ηβ5

β5η = ηβ4
(30)

for m = 1, 2, 3.
The Lagrangian given by equation (28) admits a conserved five-current

j
µ
DKP = �βµ�. (31)

By developing the sum

0 = ∂µjµDKP = ∇ · (
�β�

)
+ ∂4

(
�β4�

)
+ ∂5

(
�β5�

)
(32)

one can identify: jDKP ≡ (�β�), ρDKP ≡ (�β4�) and j 5
DKP ≡ (�β5�) = 0.

3.1. DKP equation for spin zero

To construct the DKP equation for spinless particles we need five matrices of dimension six.
Let us choose them as follows [1]:

β1 =




0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0




β2 =




0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0




β3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0




β4 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 −1 0




β5 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0



.

(33)

They can be shown to generate the Lie algebra so(5, 1), by using equation (21):

Jµ6 ≡ βµ µ = 1, . . . , 5. (34)
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From these elements, one can generate the remaining elements of so(5, 1), and verify that they
all satisfy equation (23). It is straightforward to verify that the matrices in equation (33) satisfy
the DKP algebra given by equation (27) with gµν the Galilean metric in equation (6).

Hereafter we review the results first obtained in [1] for the sake of completeness, using
the uniform procedure and notation described previously. The results therein agree with the
non-relativistic limit of the equations obtained in [23]. We use the momentum expression of
equation (26) given by equation (25) with the α replaced by the β of equation (33). If we
introduce a DKP spinor

� ≡




A

θ

ϕ

φ


 (35)

with A = (Ax,Ay,Az), then equation (25) leads to

−ikA + pφ = 0

−ikθ + p4φ = 0

−ikϕ + p5φ = 0

p · A− p5θ − p4ϕ − ikφ = 0.

(36)

These equations can be expressed in terms of φ only as

p2φ − 2p4p5φ + k2φ = 0. (37)

This becomes the Schrödinger equation

Eφ = p2

2m
φ (38)

by defining the embedding

p→ (p, p4, p5) such that p4p5 = mE (39)

and absorbing the constant k into the energy as

E→ E − k2

2m
. (40)

(The difference in sign with [1] is due to the factor i in equation (25).) Note that many
definitions of p4 and p5 satisfying equation (39) are possible, because of the symmetry in p4

and p5 in the second term of equation (37). Such a symmetry may not exist in general, for
instance with the spin half particles discussed in section 4.

Once a solution φ is known, then the DKP spinor, equation (35), can be written as

�free =



−ip/k
−ip4/k

−imE/kp4

1


φ (41)

where the embedding of equation (39) has been used again.
Now let us turn to the harmonic oscillator. It is described by performing the non-minimal

substitution

p→ p + iωηr (42)
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into equation (25), with η given by equations (29) and (33). (Later we will include a factor m
into ω.) We thereby obtain

−ikA + (p− iωr) φ = 0

ikθ = p4φ

ikϕ = p5φ

(p + iωr) · A− p5θ − p4ϕ − ikφ = 0

(43)

which can be reduced to

(p + iωr) · (p− iωr) φ − p5p4φ − p4p5φ + k2φ = 0. (44)

This equation can be developed as follows:

p2φ + iω (r · p− p · r) φ + ω2r2φ − 2p4p5φ + k2φ = 0 (45)

the second term of which is −3h̄ωφ, since xpx − pxx = ih̄, etc. Using the embedding,
equation (39) and absorbing the constant k into the energy as in equation (40), then we obtain

Eφ =
(

p2

2m
+

1

2
mω2r2 − 3

2
h̄ω

)
φ (46)

after performing the change ω→ mω.
This equation is similar to equation (11) of [23] and has been derived in [1]. The present

derivation confirms the idea that the choice of embedding may not be unique.

3.2. DKP equation for spin one

As we have mentioned, a DKP equation for spin 1 can be generated by the 15-dimensional
representation of so(5, 1): the adjoint representation, easy to construct once the commutation
relations, equation (23), are known. Given the commutation relations of some Lie algebra

[xm, xn] = cpmnxp (47)

then the entries of the adjoint representation of the element xm are given by

xm→ [ad(xm)]pn ≡ cpmn. (48)

The representation given below is equivalent to the adjoint representation. We do not give
explicitly the representation of the whole algebra, but just the elements required, that is,
βµ = Jµ6, with µ = 1, . . . , 5, also in accordance with equation (21). We use the shorthand
notation eij to represent a 15-by-15 matrix whose only non-zero entry is ij , defined to be one,
that is, (eij )mn ≡ δimδjn. Then the DKP generators are

β1 = e13,1 + e14,4 + e12,8 − e11,9 − e9,11 + e8,12 + e1,13 + e4,14

β2 = e13,2 + e14,5 − e12,7 + e10,9 + e9,10 − e7,12 + e2,13 + e5,14

β3 = e13,3 + e14,6 + e11,7 − e10,8 − e8,10 + e7,11 + e3,13 + e6,14

β4 = −e10,4 − e11,5 − e12,6 + e1,10 + e2,11 + e3,12 + e15,14 + e13,15

β5 = −e10,1 − e11,2 − e12,3 + e4,10 + e5,11 + e6,12 − e15,13 − e14,15.

(49)

These matrices correspond to the basis elements Jµ6 of so(5, 1) such as given by equation (34).
Substituting equation (49) into (25), and with the DKP spinor given by

� =


v1
...

v15


 (50)
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one obtains the equations

p4w4 − ikw1 + pv13 = 0

−ikw2 + p5w4 + pv14 = 0

−ikw3 − p×w4 = 0

−p4w2 − p5w1 + p×w3 − ikw4 = 0

p4v15 + p · w1 − ikv13 = 0

p · w2 − ikv14 − p5v15 = 0

p4v14 − p5v13 − ikv15 = 0

(51)

where
w1 = (v1, v2, v3)

w2 = (v4, v5, v6)

w3 = (v7, v8, v9)

w4 = (v10, v11, v12) .

(52)

Let us remark that no embedding has been performed in equation (51). Hereafter we show how
it can be reduced to the Schrödinger equation in two different ways: the first method consists
in defining the embedding for the fields � while leaving p4 and p5 free, whereas the second
method consists in solving directly equation (51) but defining p4 and p5 at an earlier stage.

Therefore, let us first consider equation (51) with the definitions

w1 = E

w2 = −ip5A

w3 = B

w4 = kA
v13 = kφ v14 = 0 v15 = ip5φ

(53)

or

� =




E

−ip5A

B

kA

kφ

0
ip5φ




(54)

which suggests an interpretation of the components of the field � in terms of electromagnetic
fields. Substituting equation (53) into (51),

p4B − iE + pφ = 0

iB + p×A = 0
ip4p5A− p5E + p×B − ik2A = 0
ip4p5φ + p · E − ik2φ = 0

p · A + p5φ = 0.

(55)

This can be reduced to

2p4p5A− p(p · A) + p× p×A− k2A = 0 (56)

and, expressing the penultimate term as p× p×A = p(p · A)− p2A we finally obtain

EA = p2

2m
A (57)
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where we have used equation (39).
The second way to obtain equation (57) is first by adding together the first two lines of

equation (51) so that we find

ik(w1 + w2) = (p4 + p5)w4 + p(v13 + v14) (58)

and if we add together the fifth and sixth lines then we find

p · (w1 + w2) = ik(v13 + v14)− (p4 − p5)v15. (59)

If we put p4 = p5 and v13 + v14 = 0 then the two previous equations lead to

p · w4 = 0. (60)

Next we substitute the third line of equation (51) into the fourth line to obtain

−ik(p4w2 + p5w1)− p× p×w4 + k2w4 = 0 (61)

and using equation (58), with our choices for p4, p5 and v13 + v14, we find

−2p4p5w4 − p× p×w4 + k2w4 = 0. (62)

If we select the embedding for p4 and p5 as in equation (39), define A ≡ w4, use equation (60)
and include the k2 into the energy as in (40), then (62) is reduced to (57).

Next we consider the DKP simple harmonic oscillator by first performing the non-minimal
substitution, equation (42), where η is given by equations (29) and (49):

p4w4 − ikw1 + pv13 + iωv14r = 0

−ikw2 + p5w4 + pv14 + iωv13r = 0

−ikw3 − p− ×w4 = 0

−p4w2 − p5w1 + p+ ×w3 − ikw4 = 0

p4v15 + p · w1 − ikv13 − iωr · w2 = 0

p · w2 − ikv14 − p5v15 − iωr · w1 = 0

p4v14 − p5v13 − ikv15 = 0

(63)

where we have used the shorthand notation

p± ≡ p± iωr. (64)

Let us recall that a factor m is going to be included within ω at the end of the calculations.
Here again we shall display two ways to obtain equation (67). First we substitute the

embedding defined in equation (53) into (63) to get

p4A− iE + pφ = 0

iωrφ = 0

iB + p− ×A = 0
ip4p5A− p5E + p+ ×B − ik2A = 0
ip4p5φ + p · E − ik2φ − p5ωr · A = 0
p5p · A + p2

5φ + ωr · E = 0.

(65)

From the second line, φ = 0, and substituting the first and third lines into the fourth line of
equation (65), we find

2p4p5A + p+ × p− ×A− k2A = 0 (66)

from which, by using equations (39) and (40), we have

EA = − 1

2m
p+ × (p− ×A). (67)
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Before developing this expression further, let us show how it can be obtained also without
defining the embedding of the fields as in equation (53). From the third and fourth lines of
equation (63) we get

ikp5w1 + ikp4w2 − k2w4 + p+ × (p− ×w4) = 0. (68)

Next we add together the first and second lines of equation (63) to obtain

ik(w1 + w2) = (p4 + p5)w4 + p+(v13 + v14) (69)

and adding the fifth and sixth lines gives

p− · (w1 + w2)− ik(v13 + v14) + (p4 − p5)v15 = 0. (70)

As for the free case, this suggests to define the embedding such that p4 = p5 and v13 +v14 = 0.
Then from equations (69) and (70) one obtains the orthogonality condition

p− · w4 = 0→ p− · A = 0 (71)

if we define A ≡ w4 as done previously. Then equation (68) becomes

p4(2p5)w4 − k2w4 + p+ × (p− ×w4) = 0 (72)

from which we find

(2p4p5 − k2)w4 = −p+ × (p− ×w4). (73)

Using once again the embedding in equation (39) and the redefinition in equation (40) we
obtain equation (67), as expected.

It is shown in appendix A that equation (67) leads to the Schrödinger equation for a
harmonic oscillator including the effect of spin–orbit coupling:

EA =
[

p2

2m
+

1

2
mω2r2 − 3

2
h̄ω − ω

h̄
L · S

]
A. (74)

This is the non-relativistic version obtained earlier (equation (16) in [23]). It should be
emphasized that both spin 0 and spin 1 require the same embedding, equation (39). We
do not have to specify p4 and p5 separately. In the next section, we will see that the embedding
has to be modified for spin one-half.

It is worth noting that with the non-minimal coupling, equation (64), the Schrödinger
equation for the harmonic oscillator contains the spin–orbit interaction. As noted by Nikitin
and Fuschich [20], the dipole, spin–orbit, quadrupole and Darwin couplings of the particle to an
external electromagnetic field can be derived with a proper minimal couplingpµ→ pµ−ieAµ,
whereAµ is the vector potential for the external field. It is important to have the vector potential
transform as A′i = Rji Aj and A′0 = A0 + vjAj , where Rij is a rotation matrix and vj is the
velocity of the particle. It is important to emphasize that the additional terms are usually
considered to be a direct consequence of taking the non-relativistic limit to order 1/m2 of the
Lorentz-invariant equation. Here we have corroborated the results of Nikitin and Fuschich
partly, by the appearance of spin–orbit interaction, within a Galilei-covariant approach that
makes the formulation similar to the Lorentz-covariant approach.

4. Dirac equation: spin 1/2

As stated in the introduction, the algorithm described in the previous sections provides us with
a representation of the non-relativistic Dirac equation. Such a Dirac-like equation has been
constructed in [4]. Here our purpose is to treat it in the same context as the equations for
integer spin and illustrate how the formalism allows us to recover the non-relativistic limit of
the Dirac oscillator [24].
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The non-relativistic Dirac equation is(
γ µ∂µ + k

)
� = 0 µ = 1, . . . , 5 (75)

written in momentum space as equation (25) with the α replaced by the γ , which satisfy

{γ µ, γ ν} = γ µγ ν + γ νγ µ = 2gµν. (76)

The gamma matrices can be chosen as

γ n =
(
σn 0
0 −σn

)
γ 4 =

(
0 0
−√2 0

)
γ 5 =

(
0
√

2
0 0

)
(77)

where each entry is a two-by-two matrix and the σn are the spin Pauli matrices. As for the
integer spins, they generate the Lie algebra so(5, 1) by taking, as in equation (21),

γ µ = Jµ6 µ = 1, . . . , 5 (78)

and then using equation (23) to generate the remaining J . The adjoint spinor is defined as
� = �†ζ , with

ζ = −i√
2

(
γ 4 + γ 5

) =
(

0 −i
i 0

)
. (79)

The matrix ζ plays a role similar toη, equation (29), in DKP equations and will be used hereafter
to investigate the harmonic oscillator. Note that when we act on the left of equation (75) with
(γ µ∂µ − k),

0 = (
γ µ∂µ − k

)
(γ ν∂ν + k)�

= (
γ µγ ν∂µ∂ν − k2

)
�

= (
1
2 {γ µ, γ ν}∂µ∂ν − k2

)
�

= (
gµν∂µ∂ν − k2

)
� (80)

which can be seen as a non-relativistic Klein–Gordon equation to be satisfied by each field
component, as for the relativistic field counterpart. This provides a constraint on the spin half
Galilei covariant equation as was the case for the equations obtained by Dirac, Fierz and Pauli.
The mathematical structure is quite similar. However in the present case k is not the mass.
This equation has direct relevance to the presence of phonons in crystals.

Now let us consider the harmonic oscillator. If we write the Bhabha equation using
the representation, equation (77), then performing the non-minimal substitution analogous to
equation (42), with η now replaced by ζ , for a field

� =
(
ϕ

χ

)
(81)

one finds

(σ · p− ik) ϕ +
(
ωσ · r +

√
2p5

)
χ = 0

(σ · p + ik) χ +
(√

2p4 − ωσ · r
)
ϕ = 0.

(82)

In appendix B, we have gathered the calculations leading from equation (82) to the
Schrödinger equation for a harmonic oscillator including the spin–orbit coupling

Eϕ =
(

p2

2m
+

1

2
mω2r2 − 3

2
h̄ω − 2

h̄
ωL · S

)
ϕ. (83)

Obviously a similar equation can be obtained in terms of the field χ . This result, equation (83),
is in agreement with the non-relativistic limit of the Dirac oscillator investigated in [24].
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5. Concluding remarks

In this paper, we have applied a Galilean covariant formalism in five dimensions to construct
non-relativistic first-order Bhabha wave equations. We have considered particles with spin 0,
1/2 and 1, having obtained in each case the Hamiltonian of the harmonic oscillator. Higher
spins (3/2, 2, 5/2, . . .) can be studied using this approach and are included in other irreducible
representations of so(5, 1).

Related topics can be further investigated: (1) the two non-relativistic limits of the
electromagnetic field [25] in a covariant way; (2) description of the spin content of various
irreducible representations of so(5, 1) as done in the paper II of the series [10] for the relativistic
case; (3) introduction of gauge fields into wave equations for various spins; (4) investigation
of the wave equation for spin 2 particles and its applications to gravitational fields; and
(5) quantization of the non-relativistic Galilei-covariant Bhabha equations. Other projects
involving Galilean covariance but not specifically related to linear wave equations are the
investigation of equations for fluids and for the kinetic theory (like the Vlasov and Boltzmann
equations), the study of Galilean supersymmetry, and applications in thermo field dynamics.
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Appendix A. Spin one

This appendix contains the details of the calculations starting with equation (67) and leading
to equation (74). The first step involves a careful manipulation of the triple product in
equation (67); indeed one must keep in mind that p± involves operators that act on the field
A. Therefore one must use an identity such that the vector field A always lies at the far right:

(a× (b× c))m = bm (a · c)− (a · b) cm +
3∑
n=1

[an, bm] cn. (A.1)

From this equation, the triple product of equation (67) becomes

p+×(p−×A) = p−(p+ · A)− (p+ · p−)A +
3∑
n=1

[(p+)n, (p−)m]An

= p−(p+ · A)− (p+ · p−)A− 2h̄ωA (A.2)

where we have used [(p+)m, (p−)n] = −2h̄ωδmn.
Next let us expand the first term of equation (A.2):

p−(p+ · A) = (p− iωr) [(p + iωr) · A]

= p(p · A) + ω2r(r · A)− iω [r(p · A)− p(r · A)]

= p(p · A) + ω2r(r · A) + ω[h̄ + L · S]A. (A.3)

The last line has been obtained by first developing the last term of the second line of
equation (A.3) as

[r(p · A)− p(r · A)]m =
∑
n

rmpnAn − pmrnAn

= −
∑
n

(rnpm − rmpn)An + ih̄Am

= −(L×A)m + ih̄Am. (A.4)
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(In the second line we have used the canonical commutation relations: rmpn−pnrm = ih̄δmn.)
Next we consider the spin 1 representation for which (Sm)kl = −ih̄εklm (as in equation (A.1)
of [23]) and then calculate

i(L×A)m = iεmnpLnAp
= −iεmpnLnAp

= 1

h̄
Ln(Sn)mpAp

= 1

h̄
(L · S)mpAp

= 1

h̄
[(L · S)A]m (A.5)

so that L×A = − i
h̄
(L · S)A.

Having obtained equation (A.3) now we expand the second term of equation (A.2):

(p+ · p−)A = (p + iωr) · (p− iωr)A

= [p2 + iω(r · p− p · r) + ω2r2]A

= [p2 + iω(3ih̄) + ω2r2]A

= p2A− 3h̄ωA + ω2r2A. (A.6)

Substituting equations (A.3) and (A.6) back into (A.2) we find

p+×(p−×A) = p(p · A) + ω2r(r · A) + h̄ωA +
ω

h̄
(L · S)A

−p2A + 3h̄ωA− ω2r2A− 2h̄ωA

= p(p · A)− p2A + ω2[r(r · A)− r2A] + ω

(
2h̄ +

1

h̄
L · S

)
A (A.7)

which corresponds to equation (A.2) of [23].
The last step consists in using equation (71), which is reminiscent of some sort of gauge

fixing. From this one can assert that

0 = p+(p− · A)

= p(p · A)− iωp(r · A) + iωr(p · A) + ω2r(r · A)

= p(p · A)− ω
h̄
(L · S)A− h̄ωA + ω2r · A (A.8)

where we have used once again equations (A.4) and (A.5). Using equations (A.8), (A.7) and
redefining ω→ mω, we can rewrite equation (67) as

EA = − 1

2m
p+×(p−×A)

= 1

2m

[
p+(p− · A)− p+×(p−×A)

]

= 1

2m

[
p(p · A) +m2ω2r(r · A)− m

h̄
ω(L · S)A−mh̄ωA− p(p · A)

+p2A−m2ω2r(r · A) +m2ω2r2A− 2mh̄ωA− 1

h̄
(L · S)mωA

]

= 1

2m

[
p2 − 2

m

h̄
ωL · S − 3mh̄ω +m2ω2r2

]
A

=
[

p2

2m
+

1

2
mω2r2 − 3

2
h̄ω − ω

h̄
L · S

]
A. (A.9)
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Appendix B. Spin half

In this section we show how the equation (83) can be obtained from equation (82). Multiplying
the first line of equation (82) by σ ·p+ ik on the left, and the second line by−(√

2p5 +ωσ ·r)
,

and adding the two resulting equations together gives[
p2 + k2 + ω2r2 − 2p4p5 −

√
2ωσ · r(p4 − p5)

]
ϕ

−ω[(σ · r)(σ · p)− (σ · p)(σ · r)]χ = 0. (B.1)

The identity

(σ · a)(σ · b) = a · b + iσ · (a× b) (B.2)

has been used repeatedly. As stated before, we see from equation (B.1) that here we are forced
to choose an embedding such that p4 = p5, unlike the integer spins. Now we use

(σ · r)(σ · p)− (σ · p)(σ · r) = r · p + iσ · r × p− p · r + iσ · p× r

= (r · p− p · r) + 2iσ · L

= 3ih̄ + 2iσ · L (B.3)

together with the embedding provided by equation (39) and

χ = −iϕ (B.4)

to obtain

2mEϕ = (
p2 + k2 + ω2r2 − 3h̄ω − 2ωσ · L

)
ϕ. (B.5)

By redefining the energy as in equation (40) and including explicitly the mass m into ω, we
find

Eϕ =
(

p2

2m
+

1

2
mω2r2 − 3

2
h̄ω − 2

h̄
ωL · S

)
ϕ (B.6)

where we have used the usual definition S ≡ 1
2 h̄σ.
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